// Fuzzy searching allows for flexibly matching a string with partial input, // useful for filtering data very quickly based on lightweight user input. package fuzzy import ( "unicode" "unicode/utf8" ) var noop = func(r rune) rune { return r } // Match returns true if source matches target using a fuzzy-searching // algorithm. Note that it doesn't implement Levenshtein distance (see // RankMatch instead), but rather a simplified version where there's no // approximation. The method will return true only if each character in the // source can be found in the target and occurs after the preceding matches. func Match(source, target string) bool { return match(source, target, noop) } // MatchFold is a case-insensitive version of Match. func MatchFold(source, target string) bool { return match(source, target, unicode.ToLower) } func match(source, target string, fn func(rune) rune) bool { lenDiff := len(target) - len(source) if lenDiff < 0 { return false } if lenDiff == 0 && source == target { return true } Outer: for _, r1 := range source { for i, r2 := range target { if fn(r1) == fn(r2) { target = target[i+utf8.RuneLen(r2):] continue Outer } } return false } return true } // Find will return a list of strings in targets that fuzzy matches source. func Find(source string, targets []string) []string { return find(source, targets, noop) } // FindFold is a case-insensitive version of Find. func FindFold(source string, targets []string) []string { return find(source, targets, unicode.ToLower) } func find(source string, targets []string, fn func(rune) rune) []string { var matches []string for _, target := range targets { if match(source, target, fn) { matches = append(matches, target) } } return matches } // RankMatch is similar to Match except it will measure the Levenshtein // distance between the source and the target and return its result. If there // was no match, it will return -1. // Given the requirements of match, RankMatch only needs to perform a subset of // the Levenshtein calculation, only deletions need be considered, required // additions and substitutions would fail the match test. func RankMatch(source, target string) int { return rank(source, target, noop) } // RankMatchFold is a case-insensitive version of RankMatch. func RankMatchFold(source, target string) int { return rank(source, target, unicode.ToLower) } func rank(source, target string, fn func(rune) rune) int { lenDiff := len(target) - len(source) if lenDiff < 0 { return -1 } if lenDiff == 0 && source == target { return 0 } runeDiff := 0 Outer: for _, r1 := range source { for i, r2 := range target { if fn(r1) == fn(r2) { target = target[i+utf8.RuneLen(r2):] continue Outer } else { runeDiff++ } } return -1 } // Count up remaining char for len(target) > 0 { target = target[utf8.RuneLen(rune(target[0])):] runeDiff++ } return runeDiff } // RankFind is similar to Find, except it will also rank all matches using // Levenshtein distance. func RankFind(source string, targets []string) ranks { var r ranks for _, target := range find(source, targets, noop) { distance := LevenshteinDistance(source, target) r = append(r, Rank{source, target, distance}) } return r } // RankFindFold is a case-insensitive version of RankFind. func RankFindFold(source string, targets []string) ranks { var r ranks for _, target := range find(source, targets, unicode.ToLower) { distance := LevenshteinDistance(source, target) r = append(r, Rank{source, target, distance}) } return r } type Rank struct { // Source is used as the source for matching. Source string // Target is the word matched against. Target string // Distance is the Levenshtein distance between Source and Target. Distance int } type ranks []Rank func (r ranks) Len() int { return len(r) } func (r ranks) Swap(i, j int) { r[i], r[j] = r[j], r[i] } func (r ranks) Less(i, j int) bool { return r[i].Distance < r[j].Distance }